Lessons from Martian Climate Change

NASA
NASA

Water flows on Mars, NASA announced September 28. “Using an imaging spectrometer on [the Mars Reconnaissance Orbiter], researchers detected signatures of hydrated minerals on slopes,” NASA reports. I first heard about this surface water from an August 19 video from Comic-Con (see minute 9:40), in which NASA representatives discuss Mars and The Martian film; some evidence for this water has been around for several years.

This is huge news with respect to potential human missions to Mars as well as to the potential for discovering life on Mars.

But how did Mars get so dry in the first place, and what does that phenomenon teach us about Earth?

I was somewhat amused to read the following Tweet: “‘Mars suffered climate change and lost its surface water.’ There are words to scare the s**t out of all living humans.” I agree with that sentiment, but not for the reasons the Tweeter presumably had in mind.

What the Tweeter probably thought was something like this: “Mars experienced climate change that would have been catastrophic for any life present and that likely prevented new life from developing. Earth, too, is experiencing some climate change, largely because of human activity, and this could lead to catastrophic results such as we see on Mars.”

Obviously, such a take on Martian climate change is a little silly. Mars lost almost all of its greenhouse gasses; Earth is gaining greenhouse gases. (Due mostly to human activity, carbon dioxide has risen from around 300 parts per million of the atmosphere, or 0.03 percent of the atmosphere, to 400 parts per million, or 0.04 percent.) Outside the realm of pure fantasy, not even the most hysterically alarmist predictions about Earth’s climate change predict a future remotely as dire as what happened on Mars.

But the extreme changes on Mars do offer a warning to humans. We’ll come back to that.

First, let’s review in brief what happened on Mars. As the geography of Mars makes evident, water once flowed in great abundance on Mars. But then Mars lost most of its atmosphere and the oceans boiled away. Why? Apparently Mars just didn’t have enough mass to hang on to its air, especially given the violence of meteor impacts, and the atmosphere dissipated. (Another theory I’d heard, that Mars’s weak magnetic field allowed solar winds to blow off the atmosphere, appears not to be much of a factor.)

The main lesson of Martian climate change, then, is that for the most part the universe is extremely hostile to life, and even places most hospitable to life may not stay that way. If life evolved on Mars, it was either killed off or driven underground by purely natural causes.

The Earth is not magically immune from such potential natural catastrophes. Indeed, less-severe natural catastrophes, ranging from earthquakes to hurricanes to volcanic eruptions, happen fairly routinely. Asteroid collisions have dramatically impacted the evolution of life on Earth—and a sufficiently large asteroid could destroy all life on Earth. At one point, humanity “damn near went extinct” due to an ice age likely caused by a supervolcano.

The lesson I take from this is that, to ensure the survival and expansion of our species long-term, humans absolutely must colonize space—and Mars is a great place to begin.

Andy Weir, author of The Martian novel, shares this view:

I want us to have a self-sufficient, human population somewhere other than Earth, because, twenty-five years of being a computer programmer has taught me the value of backing things up. And, as long as our entire species is on one planet, we risk extinction. It’s not very likely, but it could happen. It could be plague, it could be a war, it could be a meteor strike or something like that. But, if we’re on two planets, it is practically impossible for us to die.

Similarly, in Welcome to Mars, Buzz Aldrin writes, “The pioneers who settle Mars will . . . ensure the long-term survival of life in our solar system. Earth faces challenges. If there were a disaster, Mars would give us a place to get resources or to make a new home” (p. 6).

Speaking of climate change, Aldrin has some intriguing ideas for pursuing human-made climate change on Mars:

Giant mirrors in orbit could direct . . . sunshine to heat Mars’s polar ice caps. A temperature increase of just a few degrees would thaw the carbon dioxide frozen there. . . . As the temperature rises, more carbon dioxide is released. . . . If the mirrors aren’t enough, we can knock an asteroid out of its orbit to slam into Mars. Some asteroids are rich in ammonia, another greenhouse gas. An impact would produce a lot more heat and carbon dioxide, too. Once it is warm enough for water on the surface, plants can grow. (pp. 88–89)

I’m not sure how well that would work long-term, especially given Mars’s apparent difficulty keeping its atmosphere. But, one way or another, humans can make Mars hospitable to life.

Sure, human activity brings with it certain risks, harms, and trade-offs. But these risks are nothing compared to the risks of humans not acting to expand and improve human life on Earth and, eventually, beyond.

Related:

The Martian Presents a Hopeful Future for Humanity

The Martian is a tense action-drama focusing on the efforts of astronaut Mark Watney to stay alive on Mars after he is left behind in the course of a near-future mission.

The Martian Film

Readers of Andy Weir’s novel The Martian (which I reviewed for Objective Standard) knew that the science presented in the film would be highly realistic. (The major exception is the opening dust storm, which, as Weir has granted, is much more powerful than is possible in Mars’s thin air; Weir strayed from the science here for dramatic effect.)

We knew that the story would be a tense action-drama focusing on the efforts of astronaut Mark Watney to stay alive on Mars after he is left behind in the course of a near-future mission.

We also knew that the characters, particularly Watney, would be colorful and engaging.

What I did not know is whether the film would be very good. On one hand, it’s directed by Ridley Scott, and it stars Matt Damon and a superb supporting cast, so what could go wrong? On the other hand, lines such as Watney’s remark, “I’m going to have to science the s**t out of this” (added by screenwriter Drew Goddard, not Weir), could have come across as hokey in less talented hands. Was this film going to bring Weir’s enthralling tale fully to life or paint it by numbers?

I loved it. The film version of The Martian surpassed my hopes, which started out pretty high. I had been excited about the film since I first heard about it after reading the novel. In some ways, the film improves on the novel, as with its better-developed ending.

True, after an intense opening sequence, the film progresses a little slowly. But it builds steam as it develops its characters and reveals the enormity of the challenges that Watney faces. This is not your typical high-explosion, constant-motion (but ultimately meaningless) action flick; it is a story that is both exciting and deeply human.

Matt Damon is excellent. He nails the intensely emotional scenes as well as the funny ones. All of the lines, many of which a lesser actor would have bungled, come across as authentic and in-character—even the pirate jokes.

Among the supporting cast, standouts include Jessica Chastain as the mission commander who plays a pivotal role in the rescue effort; the always-outstanding Chiwetel Ejiofor as a NASA official; Mackenzie Davis as a young NASA satellite operative who first discovers Watney is still alive; and Donald Glover as an innovative astrophysicist who hatches a plan to bring Watney home.

Also, Sean Bean has a nice role as the earth-stationed flight commander—and he doesn’t even die!

Both the Martian landscapes and the scenes in space are gorgeous. Watching this film, it’s easy to imagine yourself on Mars.

I love Watney’s determination and his sense of humor under enormous pressure.  But mostly I love The Martian‘s glimpse into the future of space colonization that we humans are destined to have—if only we choose to strive for that future. This is probably the most enjoyable film I’ll watch this year—and it may the most important film of the era.

Related:

Buzz Aldrin’s Delightful Guide for Young Martians

NASA
NASA

It is entirely possible that my son will be among the first Martians. I was therefore delighted to pick up a copy of Buzz Aldrin’s new guide for young Earthlings who aspire to visit Mars someday, move there, or at least learn more about our neighbor in the solar system. Aldrin wrote the book—Welcome to Mars: Making a Home on the Red Planet, published this year by National Geographic Kids—with the help of physicist and children’s author Marianne J. Dyson.

Aldrin invites young readers to join him on a visionary journey to travel to Mars and help build the first colony there. Colonists first rocket to the red planet on a six-month journey.

Then the crew lands on the new world. Aldrin stirs the imagination:

The jets kicked up a cloud of dust just like on the moon, too. [Remember, Aldrin walked on the moon on the same trip as Neil Armstrong.) It settled down faster here because there is more gravity here than on the moon. But the real difference is the sky. On the moon, the sky was black, even in the daytime. Here, the rosy color is like the dawning of a new day. (p. 53)

Colonists join their associates who arrived earlier to set up camp, then set off to explore Mars to find an ideal place for a new home. Finally everyone settles in and contemplates plans for building larger living areas and, eventually, for terraforming the surface.

Welcome to Mars by Buzz AldrinAround this simply told story, Aldrin weaves substantial background information about the history of Martian study, the science of getting to Mars and eventually living there, and the nature of the planet itself.

Because of this material, Aldrin’s book makes an excellent primer for busy adults, too. One thing I learned about was the “Aldrin Cycler,” a specialized spaceship that permanently orbits around the sun, passing close both to Mars and to Earth. Aldrin’s idea is to hop aboard a Cycler, which passes by Earth every twenty-six months, to ferry people and supplies to Mars. Although I’m not convinced that a Cycler is necessarily the way to go for the first colonists to Mars—Robert Zubrin has other ideas—it seems like an obviously good idea at least in the long-term.

I especially enjoyed one of Aldrin’s historical tidbits. In 1966, Carl Sagan coauthored a book claiming (Aldrin summarizes) that Mars’s moons “Phobos and Deimos might be artificial satellites left from an extinct Martian civilization” (p. 36). Fantasies about advanced life on Mars have died hard—but reasonable hope that we may eventually find simple life there, or at least evidence of simple life from the past, remains.

On a few points, the book seems wildly unrealistic, as with its speculation that people might someday ski down Martian gullies (p. 59). Given Aldrin’s own description of the horrific death anyone would face on Mars without the benefit of protective habitats or suits (p. 74), I doubt anyone would risk a cracked helmet for a joyride.

I was disappointed that Aldrin pays so little attention to the possibility of nuclear power on Mars (he does mention it in a paragraph on p. 69) and so much attention to politically popular but less reliable solar and wind energies (pp. 64, 68). Aldrin emphasizes solar and wind even while discussing the facts that the sun shines less brightly on Mars, sunlight varies substantially by season, dust storms obscure the sun for weeks at a time, and the atmosphere is very thin on Mars (p. 68). Given the thin atmosphere and seasonality of storms, Aldrin’s suggestion for mountaintop wind turbines seems particularly ridiculous. By contrast, Aldrin’s suggestion for a geothermal plant is intriguing, and it seems to be much more realistic if suitable conditions can be found (p. 69).

Despite its very minor flaws, I greatly enjoyed reading through Aldrin’s book. I look forward to reading it to my son in the coming years. But suddenly I’m struck by the thought that, if my son does go to Mars someday, he might stay there forever. As sad as that would be, maybe it’s about time we said goodbye to humanity’s next wave of pioneers.

Related:

James Discusses New Mars Novel

Thomas James, coauthor of a new novel about Mars, “In the Shadow of Ares,” discussed the book at a December 20 event hosted by Liberty On the Rocks.

I also added the following comments to Amazon:

I have been fascinated with Mars as the next frontier since reading Robert Zubrin. “In the Shadow of Ares” lets us imagine actually living on the red planet. This novel is driven by its strongly drawn and charming characters. The science of the book is extrapolated from real-world technology — both of the book’s authors are engineers and one works in the space industry — yet the story revolves around the interactions of characters and avoids bogging down in technical detail (as sometimes happens with hard science fiction). It’s refreshing to read a compelling story that does not require a suspension of disbelief.

While the novel is aimed at younger readers — the main character Amber Jacobsen is fourteen — it should appeal to all science fiction fans. Amber is the first true Martian — the first person born on that planet. She is spirited, independent minded, and comfortable with science and technology, as any successful frontier settler must be. When Amber’s family must move from their homestead to a larger settlement, Amber has trouble convincing the locals that she’s competent to pull her weight. She decides to work on solving a mystery — the disappearance of the crew and ship of an earlier mission — and she thereby unwittingly enters the into the conflict between the independent settlers and the control-seeking bureaucrats.

Only in one segment did I feel the level of technical detail (about collating geological data) started to slow the story. And, while I loved Amber and her parents as characters, not all of the villains were drawn out as compellingly (though the portrayal of the bureaucrats is quite vivid and convincing). On the whole I loved this novel.

I should note here that I’ve known one of the authors, Thomas James, for for a couple of years, and I contribute (without compensation) to a political web page he helps to run (PeoplesPressCollective.org).

Martian Climate Cycles

Omigosh! Mars has suffered both Global Warming and Global Cooling! Quick—pass another subsidy! Charles Q. Choi reports for Fox:

Peering beneath the ice at the north pole of Mars has now revealed the red planet may be surprisingly colder than was thought.

Any liquid water that might exist on Mars therefore might be hidden deeper than once suspected, closer to that world’s warm heart, researchers suggested. …

Mars Reconnaissance Orbiter… scans revealed the polar cap has up to four layers of ice rich in sand and dust, each separated by clearer sheets of nearly pure ice. Each dirty and clean layer is some 1,000 feet thick (300 meters).

These dirty and clean layers were created by ages of intense dust storms followed by icy eras. This five-million-year-long cycle was likely driven by wobbles in Mars’ tilt and fluctuations in the shape of its orbit around the sun.

The more sunlight the red planet saw because of these changes, the more the polar icecaps retreated and the more dust storms Mars saw.

You mean something other than human production influences climate? You mean, like, maybe the sun?

Whether and to what extent human emissions of carbon dioxide and other gases influence Earth’s climate, liberty remains the best policy.

Liberty also offers people the greatest promise of mining that Martian ice and generally setting up camp on the planet. There’s a whole solar system filled with natural resources just waiting for people to exploit them.